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Abstract: In this paper, we propose a novel algorithm for underdetermined blind identification problems in 

blind signal separation. The proposed algorithm is based on the charrelation matrix of observations. The 

charrelation matrix can not only be considered as a generalized covariance matrix, but also incorporates 

higher-order information. It is significant for blind separation problem based on statistic characteristics to 

extract statistical information. The problem of underdetermined blind identification is converted as a tensor 

decomposition model. The mixing matrix is estimated from the rank-1 terms of the tensor decomposition. 

Theoretical analysis and simulation results illustrate that the proposed algorithm performs better estimated 

performance than the underdetermined blind identification algorithm based on second-order covariance and 

four-order cumulant respectively. 
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1 Introduction 
Recently, blind signal separation (BSS) technique 

has become increasingly active and attractive applied 

in wireless communication systems [1-9]. In our 

opinion, some reasons can account for it. With the 

help of BSS technique, on the one hand, the 

frequently used pilot sequence can be spared for 

improving spectral efficiency. On the other hand, it 

can enhance the capacity of source recovery and 

resist unpredictable interference in communications 

in spite of fewer prior information [4-7]. Aided by 

BSS technique, the blind communication technique 

can be realized. This is promising for some 

communication environments for anti-interference, 

whose case are difficult to acquire prior information 

in communication link.   

The aim of the BSS is to recover the unknown 

source signal or the mixing matrix from only 

observed signals. Nowadays, underdetermined BSS 

is a hot topic and difficult problem in the this subject, 

which has brought about much attention [10-16]. 

Underdetermined case is ubiquitous in the 

communication systems. It is a representative case 

when the number of received sensors is less than that 

of sources, namely underdetermined multiple input 

multiple output (MIMO) systems. In the 

overdetermined or determined case, the unknown 

source signals can be obtained when the mixed signal 

is multiplied by the inverse or pseudo-inverse of 

mixing matrix. Therefore, the estimation of mixing 

matrix is enough to implement the separation work. 

Although the underdetermined case does not like the 

previous operation, the estimation of mixing matrix 

is a improtant  step for further source recovery. The 

problem of blind identification of underdetermined 

mixtures will be focused on in this paper. 

As far as we are concerned, the algorithm of 

underdetermined blind identification can be divided 

into two types. The first type of algorithms are from 

the assumption that the sources are sparse or the 

sources may become sparse by executed some 

preprocessing linear transform (e.g. Short-Time 

Fourier transform) [10-13]. These algorithms need 

clustering techniques to implement an exhaustive 

search for the mixing vector space, and are therefore 

very expensive, especially when there are more than 

two observation sensors. The second type of 

algorithms come from the algebraic structure of 

statistical characteristic [14-16]. In such case, the 

sparsity of the source signal can be avoided, these 

algorithms may be more in common use. There are 

two typical representative algorithmic, second-order 

blind identification of underdetermined mixtures 

(SOBIUM) [14] and fourth-order blind identification 

of underdetermined mixtures (FOBIUM) [16]. 

SOBIUM algorithm is based on the algebraic 

structure of second-order covariance, and FOBIUM 

algorithm is based on the algebraic structure of 

fourth-order cumulant. From the complexity 

perspective, the FOBIUM exceed the SOBIUM. 
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From the statistical property perspective, the 

performance of FOBUIM is sensitive to the length of 

sample due to the estimation problem of higher-order 

cumulant. However, the SOBIUM can not resist 

Gaussian noise due to its second-order property 

compared to the fourth-order cumulant.  

In order to coordinate the previous shortcomings, 

we use a new generic statistics charrelation matrix 

for blind identification problem. The charrelation 

matrix is a generalization of covariance matrix, 

encompassing statistical information beyond second 

order while maintaining a convenient 2-dimensional 

structure [17]. As far as we know,  there is little 

literature to report charrelation matrix based blind 

identification of underdetermined mixtures. 

Therefore, the main work of this paper is that firstly, 

we extend this new statistical tool to the more 

attractive case of complex random signal; then the 

charrelation matrix based blind identification of 

underdetermined mixture (CMBIUM) is proposed. 

Theoretical analysis and simulation results illustrate 

that the proposed algorithm has nearly similar 

complexity to SOBIUM algorithm, but better blind 

identification performance. Moreover, the blind 

identification performance of the proposed algorithm 

is superior to the FOBIUM in short data symbols 

(few sample numbers).  

The organization structure of the remainder paper 

is as follows. The charrelation matrix is defined and 

its relevant properties is illustrated in section 2.The 

underdetermined blind identification problem and the 

CMBIUM algorithm are presented in section 3. 

Simulation results of the CMBIUM for different 

signal to noise ratio (SNR) and different length of 

data sample compared with SOBIUM and FOBIUM 

are presented in section 4. Concluding remarks are 

summarized in section 5. 

Notation: Scalars are denoted by lower-case italic 

letters ( ), ,a b… , vectors by lower-case boldface 

letters ( ), ,a b… , matrices by boldface 

capitals ( ), ,A B…  and tensor by caligraphic 

letters ( ), , ,…A B . Italic captial are used to denote 

index upper bounds ( )1,2 ,j J= … . The entry with 

row index i and column index j in a matrix A , 

i.e., ( )
ij

A ,is symbolized by ija . Likewise, we 

have ( ) ijkijk
a=A . The columns of A are denoted by 

1 2, ,a a … . Conversely, the matrix with columns 

1 2, ,a a … is denote by A . The superscripts ( )
T

⋅ , ( )
∗

⋅ , 

and ( )
H

⋅ denote the transpose, the complex conjugate, 

and the complex conjugated transpose, respectively. 

ℝ and ℂ denote real number field and complex 

number field, respectively. 

 

 

2 Charrelation Matrix 
In this section, the definition and relevant properties 

of the charrelation matrix for complex random signal 

are presented. First, the charmean is illustrated, 

which can be considered as a generalization of 

expectation (mean) operator [17]. Then the 

charrelation matrix is illustrated.  

Definition 1. (Charmean) 

Given a random vector
K∈x ℂ , and a function 

( ) : K L⋅ →g ℂ ℂ , the charmean of ( ) L∈g x ℂ with 

respect to (w.r.t.) x at an arbitrary 

processing-point
K∈τ ℂ is defined as: 

( )
( ) { }

{ }

exp
;

exp

H

L

x H

E

E

 
  ∈    
 

g x x τ
η g x τ

x τ
≜ ℂ    (1)                       

Whenever both means (taken w.r.t. x ) exist. 

The charmean shares many properties with the 

conventional expectation operator (e.g., linearity 

in ( )g x ,separability in the case of the statistical 

independence), and for =τ 0 both operator coincide. 

Definition 2. (Cross-charrelation and charrelation 

matrices) 

Given a random vector
K∈x ℂ and function 

( ) 1

1 :
LK⋅ →g ℂ ℂ and ( ) 2

2 :
LK⋅ →g ℂ ℂ , the 

cross-charrelation matrix between ( )1g x and 

( )2g x w.r.t. x at an arbitrary 

processing-point
K∈τ ℂ is defined as: 

( ) ( ) ( ) ( )

( ) ( ) 1 2

1 2 1 2

1 2

, ; ;

; ;

H

L LH ×

  −    

∈      

x x

x x

Ψ g x g x τ η g x g x τ

η g x τ η g x τ

≜

ℂ
   

(2) 

Whenever all the charmeans involved exist. Similary, 

for ( ) : K L⋅ →g ℂ ℂ , the charrelation matrix of 

( )g x (w.r.t. x , at τ ) is simply defined as the 

cross-charrelation between ( )g x and itself, 

namely ( ) ( ) ( ); , ;      x x
Ψ g x τ Ψ g x g x τ≜ . 

The charrelation matrix is a symmetric, positive 

semi-definite matrix, sharing many properties with 

the conventional covariance matrix. Both the 

cross-charrelation and charrelation matrices coincide 
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with the cross-covariance and covariance matrices 

(resp.) for 0=τ . For ( ) =g x x , the charrelation 

matrix coincides with the Hessian (at τ ) of the 

second generalized characteristic funtion of x , 

namely, [ ] { }
2

; log exp H

T
E

∗

∂  =  ∂ ∂x
Ψ x τ x τ

τ τ
. 

The following addition properties are relatively 

straightforward to derive [17], and would be useful 

in our subsequent derivations: 

Properties (Charrelation matrix) 

(1) Linear transformations: If 
L K×∈C ℂ and 

L∈c ℂ are some constant matrix and vector, 

and
L= + ∈y Cx c ℂ ,then  

[ ] [ ]

[ ]

; ;

; ;

H L L

H H L L

×

×

= ∈

 = ∈ 

x x

y x

Ψ y τ CΨ x τ C

Ψ y τ CΨ x C τ C

ℂ

ℂ
 (3)                            

(2) Independence: If 
K∈x ℂ can be partitioned 

into two statistically independent 

groups 1

1

K∈x ℂ , 2

2

K∈x ℂ with 1 2K K K+ = , 

then [ ]; K K×∈xΨ x τ ℂ  is block-diagonal (with 

the respective partition) for all
K∈τ ℂ at which it 

exist. 

Convenient estimates of the charmean and the 

charrelation matrix are obtained from the 

sample-charmean and the sample-charrelation 

(resp.): 

( )
[ ]( ) [ ]{ }

[ ]{ }
1

1

exp

ˆ ;

exp

N
H

n

N
H

n

n n

n

=

=

=  

∑

∑
x

g x x τ

η g x τ

x τ

(4)                        

( ) ( ) ( )

( ) ( )

ˆ ˆ; ;

ˆ ˆ; ;

H

Hx x

 = −    

      

x x

x x

Ψ g x τ η g x g x τ

η g τ η g τ
 (5)         

Though biased in general, both estimates are 

asymptotically unbiased and consistent. To simplify 

the exposition, we shall from now on use ( )xΨ τ as 

shorthand for ( );xΨ x τ in instructions below. 

 

 

3 Charrealtion Matrix Based 

Underdetermined Blind Identification  
 

 

3.1 Problem formulation  
Consider the following basic linear mixture model: 

( ) ( ) ( )t t t= +x As n            (6)                                   

The stochastic vector ( ) Jt ∈x ℂ represents the 

observation signals, the components of the stochastic 

vector ( ) Qt ∈s ℂ correspond to unobserved source 

signals, and ( ) Jt ∈n ℂ denotes additive Gaussian 

noise. The unknown mixing 

matrix
J Q×∈A ℂ characterizes the way that the 

sources are acquired by the sensors. The aim of blind 

identification is to estimate the mixing matrix from 

the observations based on the assumption that the 

source signals are statistically independent. The 

mixing matrix obtained may in turn be used to 

estimate the original source signals from the 

observations. The overdetermined case has been 

addressed in most of literature about BSS, 

where J Q≥ . In this paper, the underdetermined 

case is considered, where J Q< . 

 

 

3.2 The proposed algorithm: CMBIUM  
According to the properties of charrelation matrix in 

the previous sectionⅡ, the model funtion is derived. 

The model function is a function relationship 

between the mixing matrix and the observation’ 

charrelation matrices, evaluated at K arbitrary 

processing-points 1, , Kτ τ… . From property 1 above 

of Charrelation matrix, and from the BSS 

model =x As (For convenience, without loss of 

generality, the noise n is ignored except when 

running simulation experiments), we have  

( ) ( )H H=
x s

Ψ τ AΨ A τ A        (7) 

Moreover, from property 2, the charrelation 

matrix ( )H

s
Ψ A τ of the random vector s with 

mutually independent elements is strictly diagonal 

(more detail can be found in Appendix A). 

Consequently, the charrelation matrices of the 

observations satisfy when the K arbitrary 

processing-points is considered. 

( ) ( )

( ) ( )

1

1 1

H H

K H H

K K

= =

= =

x x s

x x s

Ψ Ψ τ AΨ A τ A

Ψ Ψ τ AΨ A τ A

⋮     (8)                      

Let us stack the matrices
1 , , K

x x
Ψ Ψ… in model 

function (8) in a tensor
J J K× ×∈ℂM , 

where ( ) ( )k

ijk ijxΨ≜M , 1, ,i J= … , 1, ,j J= … , 

1, ,k K= … . Define a matrix 
K Q×∈D ℂ by 

( ) ( )( )H

kkq qq
s

D Ψ A τ≜ , 1, ,k K= … , 
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1, ,q Q= … . Then we have 

1

Q

ijk iq jq kq

q

m a a d∗

=

=∑           (9)                                

which we can write as  

M = + +…
1

a

1
a

1d

Qa

Qa

Qd

 
Fig 1. Rank-Q Tensor decomposition 

1

Q

q q q

q

∗

=

∑a a d� �M =        (10)                          

in which“ �”denotes the outer product and in 

which{ }qa and{ }qd are the columns of A and D , 

respectively. Equation (10) is decomposition of 

tensorM in a sumQ rank-1 terms, as shown in fig. 

1. In the literature, this is called a “Canonical 

Decomposition” (CANDECOMP) or “Parallel 

Factors Model” (PARAFAC)[18, 19]. The minimal 

number of rank-1 tensors in which a higher-order 

tensor can be decomposed, is called its rank. Note 

that each rank-1 term in (10) is consisted of the 

contribution of one distinct source toM . Therefore, 

in terms of this tensor, “source separation” 

corresponds to the computation of decomposition 

(10), provided it is unique. Tensor rank-1 

decomposition can be unique, which allows for the 

determination of the mixing matrix (up to a scaling 

and permutation of its columns) in the 

underdetermined case. 

A important uniqueness condition needs the 

notion of Kruskal-rank or k-rank ( )k A of a matrix A . 

It is defined as the maximal number of k such that 

any set of k columns of A is linearly independent 

[18, 19]. We can acquire the condition that 

decomposition (10) is essentially unique when  

( ) ( ) ( )2 2 1k k Q+ ≥ +A D     (11)                        

The standard way to compute tensor rank-1 

decomposition, is by means of an “Altenating Least 

Squares (ALS)” algorithm [20, 21]. More specifically, 

one optimizes the cost function as follows. 

 
2

1
min

Q

q q qq
F

∗

=
−∑

A,D
a a d� �M      (12) 

Due to multiliearity of the model, the estimation of 

one of the arguments, given the other two, is a 

classical linear least squuares problem.The aim is to 

minimize the (squared) Frobenius norm of the 

difference between M and its estimated 

decomposition in rank-1 terms by means of an 

iteration in which each step consists of fixing a 

subset of unknown parameters to their current 

estimates, and optimizing w.r.t. the remaining 

unknowns, followed by fixing another subset of 

parameters, and optimizing w.r.t. the complimentary 

set, etc. Although the ALS algorithm of literature [21, 

21] can direct be applied in previous optimization 

problem (12), the global optimum may not be found 

(especially, the stacked tensorM is ill-conditioned). 

Therefore, we consider the way of matrix 

decomposition to solve the problem (12). 

In such way, we consider the 

pervious ( )J J K× × —tensor M is given by (9) or 

(10), in which
J Q×∈A ℂ ,

K Q×∈D ℂ . We assume 

that ( )2min ,J K Q≥ . Consider a matrix 

2J K×∈M ℂ in which the entrier of M are stacked 

as follows: 

( )( )1 , ijki J j k
m

− +
=M           (13) 

We have 

( ) T∗=M A A D⊙           (14) 

We assume that both
∗

A A⊙ and D are full column 

rank. Both conditions are generically satisfied if 

( )2min ,J K Q≥ . Note that, in this case, the rank of 

the tensorM is equal to the rank of its matrix 

representation M . Consider a factorization of M the 

form 
H=M EF               (15) 

with
IJ Q×∈E ℂ and 

K Q×∈F ℂ full column rank. 

Because of (13) and (14), we have 
∗ =A A EW⊙            (16) 

For some nonsingular
Q Q×∈W ℂ . The task is now to 

seek for W such that the columns of EW are 

Kronecker products [15]. A vector that is equal to the 

Kronecker product of a vector
I∈a ℂ and a 

vector
J∈b ℂ can be represented as an ( )I J× rank-1 

matrix. Matrices with rank at most 1 and matrices of 

which the introduced in the following theorem . 

Theorem 1 [15]. Consider the mapping 

( ) ( ): , ,I J I J I I J J× × × × ×Φ ∈ × →Φ ∈X Y X Yℂ ℂ ℂ defined by  

( )( ), ik jl ik jl il jk il jkijkl
x y y x x y y xΦ = + − −X Y  (17) 

Then we have ( ),Φ =X X 0 if and only if X is at 

most rank 1. 

Define matrices 1, , J J

Q

×∈E E… ℂ corresponding to 

each column of E in (14) so that  

WSEAS TRANSACTIONS on SIGNAL PROCESSING Zhongqiang Luo, Lidong Zhu

E-ISSN: 2224-3488 82 Volume 11, 2015



( ) ( )1 ,q
, ,qq i jij

e i j
− +

= ∀E       (18)                        

And let ( ),qs q s= Φ E EP . Note that Φ is symmetric 

in its arguments; hence  

,qs sq q s= ∀P P            (19)                      

Since Φ is bilinear, we have from (15) 

( ) ( ) ( )1 1

, 1

,
R

H H

qs v v u uvq us
v u

− −

=

= Φ∑ W W a a a aP  (20)                     

Assume at this point that there exists a symmetric 

matrixG of which the entries satisfy the following 

set of homogeneous linear equations[15]. 

, 1

R

qs qs

q s

g
=

=∑ 0P           (21) 

Substitution of (19) in (20) yields  

( ) ( ) ( )1 1

q, 1 v,

,
R R

H H

qs v v u uvq us
s u

g− −

=

Φ =∑∑ W W a a a a 0

(22)              

According to Theorem 1, we 

have ( ),H H

v v v vΦ =a a a a 0 , 1 v Q≤ ≤ . Hence  

 ( ) ( ) ( )1 1

, 1 v, 1

,
R R

H H

qs v v u u
vq us

q s u
v u

g− −

= =
≠

Φ =∑ ∑ W W a a a a 0  

(23) 

Furthermore, due to (18)and the symmetry of G we 

have 

( ) ( ) ( )1 1

, 1 v, 1

,
R R

H H

qs v v u u
vq us

q s u
v u

g− −

= =
<

Φ =∑ ∑ W W a a a a 0

(24) 

Denote 

( ) ( )1 1

, 1

R

vu qsvq us
q s

gλ − −

=

= ∑ W W     (25) 

Let us now make the crucial assumption that the 

tensors ( ),H H

v v u uΦ a a a a ,1 v u R≤ < ≤ , are linearly 

independent. Then (23) implies 

that 0vuλ = when v u≠ . As a consequence, (24) can 

be written in a matrix format as 
H=G WΛW             (26) 

in which Λ is diagonal. Actually, one can see that any 

diagonal matrix Λ generates a matrixG that satisfies 

(20). Hence, if the tensors ( ){ },H H

v v u u
v u<

Φ a a a a are 

linearly independent, these matrices form 

an Q -dimensional subspace of the symmetricQ Q×  

matirces. Let { }qG  represent a basis of this 

subspace. We have 

1 1

H

H

Q Q

=

=

G WΛ W

G WΛ W

⋮            (27)                             

in which 1, , QΛ Λ… are diagonal. The matrix W can 

be determined from this simultaneous matrix 

decomposition by means of the algorithms presented 

in [22- 25]. 

Once W is known, 
∗

A A⊙ can be obtained from 

(15). Let the columns of 
∗

A A⊙ be mapped 

to ( )J J× matrices qH as follows: 

( ) ( )
( )1 ,q

, , ,q ij i J j
q 1 Q∗

− +
= =H A A⊙ …  (28)                      

Then we have  

,H

q q q q = 1, ,Q=H a a …         (29) 

from which the mixing matrix A  can be obtained. 

The proposed agorithm can be summarized as 

follows: 

(1) According to the defintion and properties, the 

model function 

( ) ( )H H

i i=
x s

Ψ τ AΨ A τ A  , 1, ,i K= …  is 

established at K processing-points 1, , Kτ τ… . 

(2) Stack K charrelation matrices of the 

observations as
J J K× ×∈ℂM satisfying 

1

Q

q q q

q

∗

=

∑a a d� �M = , with both ( )
1q q Q≤ ≤

d  

and ( )
1

,H H

v v u u v u R≤ < ≤
Φ a a a a  linearly 

independent.  

(3) StackM in 
2J K×∈M ℂ as follows: 

( )( )1 , ijki J j k
m

− +
=M  , , ,i j k∀  . ( )Q rank= M ; 

(4) Compute factorization
H=M EF with 

2J Q×∈E ℂ and 
K Q×∈F ℂ full column rank. 

(5) Stack E in
J J Q× ×∈ℂE as follows: 

( ) ( )( )1 ,q
, ,q

ijq i J j
i j

− +
= ∀EE   

(6) Compute ,1 ,J J J J

qs q s Q× × ×∈ ≤ ≤ℂP ,as 

follows:

( )qs ikq jls iks jlq ilq jks ils jkqijkl
e e e e e e e e= + − −P ,

, , ,i j k l∀  

(7) Compute the kernel of 
,v 1

R

sv sv

s

g
=

=∑ 0P  ,under 

the constraint sv vsg g= ,s v∀ .StackQ  linearly 

independent solutions in symmetric matrices 
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1, , Q Q

Q

×∈G G… ℂ . 

(8) Determined
Q Q×∈W ℂ that simultaneously 

diagonalizes  

1 1

H

H

Q Q

=

=

G WΛ W

G WΛ W

⋮   

(9) 
∗ =A A EW⊙ ,

H−=D FW . Stack
∗

A A⊙ in 

1, , J J

Q

×∈H H… ℂ as follows: 

( ) ( )
( )1 ,q ij i J j q

∗

− +
=H A A⊙   

 

(10) Obtain qa from , 1, ,H

q q q q Q= =H a a … , then 

the mixing matrix is 1, , Q
 =  A a a… . 

 

 

3.3 Performance Evaluation 
In order to demonstrate the superiority of the 

proposed algorithm, we consider aspects of 

complexity and statistical characteristic to evaluate 

the performance of the proposed CMBIUM 

algorithm compared to SOBIUM and FOBIUM. On 

the one hand, the proposed algorithm has relatively 

equivalent complexity to the SOBIUM from the 

complexity point. Becasue both of them are from the 

two-dimension algebraic structure in covariance 

matrix and charrelation matrix respectively. If the 

multiplication operation in matrix is mainly 

considered, both of them are nearly ( )2 3O J Q K . 

Likewise, the case in FOBIUM is ( )4 4O J Q K due to 

the four-dimension algebraic structure in cumulant 

tensor.  

On the other hand, FOBIUM can suppress the 

influence of additive Gaussian noise, but that of case 

is failure to SOBIUM from the statistical 

characteristic point. However, there is a negative 

factor for FOBIUM that the length of samples 

influence the its performance due to higer-order 

statistical estimation problem.  The proposed 

algorithm can improve the pervious negative factor 

with help of charrelation matrix. Because the 

charrelation matrix offer the structural simplicity and 

controllable statistical stability of second order 

statistics on the one hand, while retaining 

higher-order statistical information on the other hand. 

In next section, the simulation experiments are 

carried out to verify the pervious exposure. 

 

 

4 Simulation Results 
To demonstrate the effectiveness of the proposed 

algorithm CMBIUM, we conduct simulation 

experiments to evaluate the performance of 

CMBIUM. For making a comparison, the SOBIUM 

and FOBIUM are also illustrated. The peroformance 

of the tested algorithms is evaluated and compared in 

terms of the relative error performance index (PI) as 

a function of the sample size and the signal-to-noise 

ratio (SNR) of the observations. The relative error PI 

is given by as [14] 

{ }ˆPI E= A - A A          (30) 

In which the norm is the Frobenius norm 

and Â denotes the optimally ordered and scaled 

estimate of the mixing matrix A .  

We consider 5Q = narrow sources, received by a 

Uniform Circular Array (UCA) of 4J =  identical 

sensors of radius aR . Considering a free space 

propagation model, the entries of the mixing matrix 

before normalization are given by 

( ) ( ) ( ) ( )( )( )exp 2 cos cos cos sinjq j q q j q qa iπ α θ φ β θ φ= +

where ( ) ( )( )cos 2 1j aR j Jα λ π= − , 

( ) ( )( )sin 2 1j aR j Jβ λ π= − , and 1i = − . We 

have 0.55aR λ =  . The mixing matrix A is 

obtained by dividing the columns of A by their 

Frobenius norm. The sources are unit-variance 

quadrature phase-shift keying (QPSK) with a 

uniform distribution, shaped by a raise cosine pulse 

shape filter with roll-off 0.3ρ = . All sources have 

the same symbol duration 4 eT T= , where eT is 

sample period. The directions-of-arrival (DOAs) of 

the different sources are given by 1 3 10θ π= , 

2 3 10θ π= , 3 2 5θ π= , 4 0θ = , 

5 10θ π= and 1 7 10φ π= , 2 9 10φ π= , 

3 3 5φ π= , 4 4 5φ π= , 5 3 5φ π= . The 

observations are contaminated by additive 

zeros-mean complex Gaussian noise. In such case, an 

equivalent underdetermined MIMO system is 

attained. The charrelation matrices of the 

observations are computed 

for ( )12K K Q= > different processing-point. The 

prossing-points τ are randomly drawn from in the 

range [-1;1]. N denotes the number of data symbol. 

Fig. 2 shows the relative error PI as a function of 

SNR when the number of symbols is 1000N = . 

From the Fig. 2, we can see that the proposed 

algorithm is superior to SOBIUM and FOBIUM as 
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analysed result. We know that the length of the data 

symbols influences the performance due to the 

problem estimation of statistical information 

sensitive to the length of samples. The proposed 

algorithm and SOBIUM is better than FOBIUM 

when the length of data symbols is short.  

Fig. 3 shows the relative error PI as a function of 

the number of data symbols, when the SNR is 10dB. 

According the Fig. 3, we obtain the result that the 

proposed algorithm CMBIUM has better 

performance than the SOBIUM and FOBIUM 

algorithm. 
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Fig.2 The relative error PI versus SNR 
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Fig. 3 The relative error PI versus length of the data 

symbols 

Taking into the previous simulation results 

account, we can summarise some reasons for those 

results. For one thing, for the estimation of the 

fourth-order cumulants in FOBIUM more samples 

are required than for the estimation of the 

charrelation matrices in CMBIUM and covariance 

matrices in SOBIUM. For another, the charrelation 

matrix is generalized covariance matrix and also 

contain higher-order information to improve 

performance. 
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Fig. 4 Computation time versus length of the data 

symbols 

Fig. 4 shows the compution time as a function of 

the number of data symbols, when the SNR is 10dB.  

We can see that the proposed algorithm has nearly 

similar computation time as SOUBIUM and the 

FOBIUM is higher than them in Fig. 4. According to 

Fig. 4, we can know that the complexity of 

computation becomes worse with the increasing of 

the symbol numbers. 

 

 

5 Conclusions  
The new statistical tool (charrelation matrix) is used 

to ameliorate the performance of underdetermined 

blind identification method. Due to the superior 

properties of charrelation matrix, we develop a 

undetermined blind identification algorithm based on 

this new tool. The underdetermined blind 

identification problem is described in terms of rank-1 

decomposition of a three-order tensor. The proposed 

algorithm has better performance of blind 

identification than SOBIUM algorithm, with 

essentially similar complexity. Moreover, the 

performance of blind identification of the proposed 

algorithm is superior to the FOBIUM algorithm in 

fewer sample numbers. The proposed algorithm 

would further be extended in undetermined MIMO 

systems in future work. 

 

 

Appendix A Diagonalization Verification 

Let ( )sϕ τɶ denote the “generalized characteristic 

function” of source signal ( )ts . Due to the statistical 

independence of elements of ( ) ( ) ( )1 , ,
T

Qt s t s t = s ⋯ , 

we get 
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( ) ( ) ( ) ( )
1 21 2 Qs s s Qϕ ϕ τ ϕ τ ϕ τ= ⋅

s
τɶ ɶ ɶ ɶ⋯    (31) 

Where ( ) ( )( )exp
is i i iE s tϕ τ τ ∗ =  
ɶ ɶ , 1, ,i Q= ⋯ .Defi

ning ( ) ( )logδ ϕ=s sτ τɶ ɶ is called “second generalized 

characteristic function” of source signal ( )ts . 

Hence, we obtain 

( ) ( ) ( ) ( )
1 21 2 Q Qδ δ τ δ τ δ τ= + + +s s s sτ

⌢
ɶ ɶ ɶ⋯   (32) 

Consequently, the charrelation matrix (Hessian 

matrix) ( )sΨ τɶ  can be easily gained 

( ) ( )
( )

( ) ( ) ( )
1 21 2

1 1 2 2

, , ,

T

Q

T

s Qs s

Q Q

diag

δ
δ

δ τδ τ δ τ

τ τ τ τ τ τ

∗ ∗

∗

∂ ∂
 = ∇ ∇ =    ∂ ∂ 

 ∂∂ ∂
 =
 ∂ ∂ ∂ ∂ ∂ ∂
 

s

s sτ τ

τ
Ψ τ τ

τ τ

ɶɶ ɶ
⋯

ɶ ɶ ɶ ɶ ɶ ɶ

                 (33) 

Where ( )diag ⋅ indicates a diagonal matrix with 

elements on the main diagonal. 
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